black

高等代数与解析几何

登录

问答题

计算题

设n为正整数,f(x)∈Q[x],a(f(x))=n,证明:有不全为零的有理数α0,α2,…,αn,使得。

【参考答案】

相关考题

问答题 P是一个数域,N是P[x]中的一个子集,满足f(x),g(x)∈N,则f(x)+g(x)∈N;对f(x)∈N及任何q(x)f(x)∈N,证明:N中有d(x),满足N={d(x)q(x)丨q(x)∈P[x]}。

问答题 求12+22+…+n2及13+23+…+n3。

问答题 证明:对P[x]中任何m次多项式f(x),必有P[x]中次数≤m+1的多项式G(x)满足G(n)=f(0)+f(1)+…+f(n-1)对任何n≥1的整数成立。

All Rights Reserved 版权所有©PP题库网库(pptiku.com)

备案号:湘ICP备14005140号-5

经营许可证号:湘B2-20140064