问答题
利用图中所示装置测一轮盘的转动惯量,悬线和轴的垂直距离为r,为减小因不计轴承摩擦力矩而产生的误差,先悬挂质量较小的重物m1,从距地面高度为h处由静止开始下落,落地时间为t1,然后悬挂质量较大的重物m2,同样自高度h处下落,所需时间为t2,根据这些数据确定轮盘的转动惯量,近似认为两种情况下摩擦力矩相等。
隔离轮盘与重物,受力及运动情况如图示:τf为摩擦力矩,T为绳中张力,a=βr 对轮盘应用转动定理:
问答题 斜面倾角为θ,位于斜面顶端的卷扬机鼓轮半径为R,转动惯量为I,受到驱动力矩τ,通过绳所牵动斜面上质量为m的物体,物体与斜面间的摩擦系数为μ,求重物上滑的加速度,绳与斜面平行,不计绳质量。
问答题 现在用阿特伍德机测滑轮转动惯量。用轻线且尽可能润滑轮轴。两端悬挂重物质量各为m1=0.46kg,m2=0.5kg,滑轮半径为0.05m。自静止始,释放重物后并测得0.5s内m2下降了0.75m。滑轮转动惯量是多少?
问答题 匀质杆可绕支点o转动,当与杆垂直的冲力作用某点A时,支点o对杆的作用力并不因此冲力之作用而发生变化,则A点称为打击中心。设杆长为L,求打击中心与支点的距离。