black

数学分析

登录

问答题

计算题

设f在U0(x0)内有定义。证明:若对任何数列{xn}U0(x0)且xn=x0,极限f(xn)都存在,则所有这些极限都相等。

【参考答案】

相关考题

问答题 证明推论:极限存在的充要条件是,对于D中任一满足条件Pn≠P0,且的点列{Pn},它所对应的函数列{f(Pn)}都收敛。

问答题 叙述极限f(x)的柯西准则,并根据柯西准则叙述f(x)不存在的充要条件,并应用它证明sinx不存在。

问答题 设f为定义在[a,+∞)上的增(减)函数。证明:f(x)存在的充要条件是f在[a,+∞)上有上(下)界。

All Rights Reserved 版权所有©PP题库网库(pptiku.com)

备案号:湘ICP备14005140号-5

经营许可证号:湘B2-20140064